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ABSTRACT

A new approach is proposed for stochastic parameterization of subgrid-scale processes in models of
atmospheric or oceanic circulation. The new approach relies on two key ingredients: first, the unresolved
processes are represented by a Markov chain whose properties depend on the state of the resolved model
variables; second, the properties of this conditional Markov chain are inferred from data. The parameter-
ization approach is tested by implementing it in the framework of the Lorenz ’96 model. Performance of the
parameterization scheme is assessed by inspecting probability distributions, correlation functions, and wave
properties, and by carrying out ensemble forecasts. For the Lorenz ’96 model, the parameterization algo-
rithm is shown to give good results with a Markov chain with a few states only and to outperform several
other parameterization schemes.

1. Introduction: Stochastic parameterization of
subgrid-scale processes

The parameterization of subgrid-scale processes in
models of atmospheric flow has drawn a lot of research
attention recently. To get beyond the limitations of pa-
rameterizations with deterministic functions, the focus
of various recent investigations has been on the poten-
tial of stochastic methods for the parameterization of
processes that cannot be resolved because they fall be-
low the model grid scale (e.g., Majda et al. 1999; Buizza
et al. 1999; Lin and Neelin 2000; Palmer 2001; Lin and
Neelin 2002; Majda and Khouider 2002; Majda et al.
2003; Khouider et al. 2003; Wilks 2005; Plant and Craig
2008).

When trying to parameterize unresolved processes
stochastically, one is faced with two main issues. The
first is to determine the class of models one wants to use
for the subgrid processes. Several directions have been
proposed and used in the literature, ranging from sto-
chastic differential equations (Majda et al. 1999, 2003;
Wilks 2005) to cellular automata (Shutts 2005; see also
Palmer 2001), multiplicative randomization of deter-
ministic parameterization schemes (Buizza et al. 1999),

and Markov chain models on a discrete state space
(Majda and Khouider 2002; Khouider et al. 2003). This
last class of models using Markov chains is the one that
we used for the present paper, as explained below in
more detail.

The second issue one faces is how to choose the pa-
rameters in the model for the subgrid processes. This
can be done either based on physical intuition (e.g., in
Lin and Neelin 2000; Majda and Khouider 2002) or by
directly using the data from the time series for the sub-
grid processes (e.g., Wilks 2005). The second approach
has the advantage of typically allowing one to make less
ad hoc assumptions about the subgrid processes. This
may be less transparent from a physical perspective, but
it is also potentially more accurate. The approach pro-
posed in this paper uses the data of the subgrid pro-
cesses to obtain a stochastic model. The related, more
general problem of inferring stochastic models from
data is considered in a wide variety of papers; for ap-
plications in atmosphere–ocean science, see, for ex-
ample, Penland and Matrosova (1994), Egger (2001),
Sura (2003), Crommelin (2004), and Berner (2005).

Specifically, we propose a strategy for stochastic pa-
rameterization that uses Markov processes that are
conditional on the state of the resolved variables. As all
stochastic parameterizations do, this strategy accounts
for the possibility to have a multiplicity of possible
states of the unresolved processes given one fixed state
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of the resolved variables. It also accounts for the pos-
sibility that the properties of the unresolved processes
(e.g., variance, skewness, and decorrelation time) will
vary with the state of the resolved variables. We give an
algorithm that translates this dependency into a com-
putationally feasible parameterization scheme. The
conditional stochastic processes are represented as
Markov chains with a small number of states, making
the practical implementation easy. The properties (such
as transition probabilities) of the Markov chains are
estimated from data in a simple, straightforward way.
The algorithm is applied to the Lorenz ’96 (L96) model
(Lorenz 1995), a frequently used test bed for param-
eterization strategies (Palmer 2001; Fatkullin and
Vanden-Eijnden 2004; Wilks 2005).

We note that the types of models resulting from the
stochastic parameterization developed in this paper
have a structure resembling the coupled models pro-
posed by Majda and collaborators in the context of
material science (Katsoulakis et al. 2003, 2005, 2006)
and focusing on tropical convection (Majda and
Khouider 2002; Khouider et al. 2003). In those studies,
a systematic subgrid-scale parameterization is proposed
in which deterministic equations for macroscopic vari-
ables are coupled to a stochastic Ising (spin flip) system
that represents microscopic phenomena. The spin-flip
system is a Markov chain that can be coarse grained
using a systematic closure procedure. Similar to our
approach, the resulting models consist of deterministic
differential equations coupled to Markov chains that
are conditional on the state of the macroscopic vari-
ables. The main difference is that in the present paper,
the parameterization (or closure) is entirely inferred
from data without using any knowledge of the physics
or equations that drive the subgrid scales. In the ap-
proach by Majda and collaborators, on the other hand,
one starts with an explicitly known microscopic model
that can be coarse grained because the equilibrium dis-
tribution of the microscopic model is known exactly
(under the assumption of detailed balance); there is no
attempt to determine the parameters in the model from
actual data.

The outline of the remainder of this paper is as fol-
lows: in section 2, we give a brief description of the
Lorenz ’96 model. The stochastic parameterization
strategy with data-inferred conditional Markov pro-
cesses is introduced in section 3. In section 4, practical
aspects of the parameterization scheme are discussed,
such as data inference and integration scheme. We
present numerical results in section 5, where we com-
pare our scheme with other parameterization schemes
by inspecting probability distributions, correlation
functions, wave statistics, and results from ensemble

integrations (both ensemble mean and dispersion). We
conclude in section 6 with a discussion, where we also
address the question of how the stochastic parameter-
ization scheme could be used in more realistic models.

2. The Lorenz ’96 model: A test bed for
parameterization algorithms

The two-layer Lorenz ’96 model, proposed by Lorenz
in 1995 (Lorenz 1995), has become a popular toy model
of the atmosphere to test various concepts and ideas
relating to predictability, model error, and parameter-
ization (Boffetta et al.1998; Palmer 2001; Orrell 2003;
Fatkullin and Vanden-Eijnden 2004; Wilks 2005). The
model equations read

Ẋk � Xk�1�Xk�1 � Xk�2� � Xk � F � Bk �1a�

Ẏj,k �
1
�

�Yj�1,k�Yj�1,k � Yj�2,k� � Yj,k � hyXk�, �1b�

in which

Bk �
hx

J �
j�1

J

Yj,k, �2�

and k � 1, . . . , K; j � 1, . . . , J. The Xk and Yj,k are
interpreted as variables on a circle of constant latitude,
where the Xk are “large-scale” variables, each coupled
to a collection of J “small-scale” variables Yj,k. The
indices k and j can be regarded as spatial indices. The
periodicity of the spatial domain is reflected in the pe-
riodicity of the variables

Xk � Xk�K, �3a�

Yj,k � Yj,k�K, �3b�

Yj�J,k � Yj,k�1. �3c�

In Lorenz (1995), the model is formulated slightly dif-
ferent from (1), with parameter settings equivalent to
	 � 0.1, 
 � 36, J � 10, F � 10, hx � �1, and hy � 1.
We use the formulation above (from Fatkullin and
Vanden-Eijnden 2004) because it makes the time scale
separation (measured by 	) between the Xk and the Yj,k

explicit. If 	 K 1, the Xk are slow variables and the Yj,k

are fast; if 	 � 1, there is no time scale separation.
Studies using the L96 system are often carried out using
parameter settings that amount to such time scale sepa-
ration (Lorenz 1995; Fatkullin and Vanden-Eijnden
2004; Wilks 2005). In this paper, we use 	 � 0.5 because
(near) absence of time scale separation between re-
solved and unresolved processes is both more realistic
and more difficult to handle for parameterizations. [See
Fatkullin and Vanden-Eijnden (2004) and references
therein for an overview (and implementation for L96)
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of recently developed computational strategies to
handle the case of 	 K 1.]

Using data from a numerical simulation of the full
L96 system (1), a scatterplot of Bk versus Xk is shown in
Fig. 1. The parameters used in the simulation are (	, K,
J, F, hx, hy) � (0.5, 18, 20, 10, �1, 1). Because of the
translation invariance of the system, this scatterplot has
the same statistical properties for all values of k. From
the figure, it is clear that for a fixed value of Xk, Bk can
take on a range of values. The properties of �(Bk|Xk),
the probability density function (PDF) of Bk condi-
tional on the value of Xk, are obviously highly depen-
dent on Xk. In Fig. 2, various PDFs of Bk are shown,
estimated from data points with Xk in different inter-
vals.

3. Parameterization with conditional Markov
processes

Within the context of the L96 system (1), the aim of
a parameterization scheme is to formulate a model for
the large-scale variables Xk alone, from which the vari-
ables Yj,k have disappeared entirely. The key element is
a suitable representation of the quantities Bk. In the full
L96 model (1), they depend on the Yj,k; in a reduced
model for the Xk variables alone, they must be param-
eterized in terms of the Xk.

One way of parameterizing is deterministic, with a
function B � G(X). In its most general form, every
element Bk of the vector B is determined by all ele-
ments Xk of the state vector X. Because the function G
can be nonlinear, this type of parameterization is often
too complicated to be of practical use for systems with

more than a few degrees of freedom [see, however,
Fatkullin and Vanden-Eijnden (2004) for an on-the-fly
computational strategy to handle this problem when
	 K 1]. For complex systems, a simplified function such
as Bk � g(Xk) is typically considered. The assumption
that Bk is determined by Xk, not by variables at other
grid points k � k, can be seen as a “locality” assump-
tion.

A more fundamental problem of deterministic pa-
rameterizations stems from the chaotic nature of the
underlying systems: a function such as Bk � g(Xk) can-
not account for the possibility that in the full system, Bk

can take on a variety of states given a fixed Xk, rather
than one unique state. Put differently, the probability
distribution of Bk with Xk fixed is often not a Dirac
delta distribution. It is therefore natural to consider
stochastic parameterizations, in which the Bk are mod-
eled as stochastic processes. They allow for different
realizations of Bk for a fixed value of Xk, consistent
with the scatterplot of Fig. 1.

We propose here a new approach to stochastic pa-
rameterization, in which we make the following two
key assumptions about the stochastic process that re-
places Bk: (i) it is a Markov process; (ii) the process is
conditional on X. We infer the properties of the sto-
chastic process from the (Xk, Bk) data of the full L96
model. To make this parameterization scheme compu-
tationally as simple as possible, we restrict the condi-
tionality in practice to Xk. Adding conditionality on
other grid points (e.g., the nearest neighbor grid points
Xk�1 and Xk�1) can be expected to improve the per-
formance of the reduced model; however, it will also

FIG. 1. Scatterplot of Bk(t) vs Xk(t) for the full L96 model (1).
Parameter settings are (	, K, J, F, hx, hy) � (0.5, 18, 20, 10, �1, 1).

FIG. 2. PDFs �(Bk) for Bk in various intervals of Xk: (dashed
line) �(Bk(t) |�4.5 � Xk(t) � �3.5), (solid line) �(Bk(t) | 1.5 �
Xk(t) � 2.5), and (dotted line) �(Bk(t) | 7.5 � Xk(t) � 8.5).
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make the model parameterization more complicated.
We leave exploration of this possibility to another
study.

In a nutshell, we model Bk by numerical (Monte
Carlo) simulation of the stochastic process with the
conditional transition probability

P�Bk�t2�|Xk�t2�, Bk�t1�, Xk�t1�� with t2 � t1, �4�

which will be estimated from the (Xk, Bk) data (see
section 4 for details). We let Xk(t2) be determined by
integration of (1a), starting from X(t1) and with Bk

fixed at Bk(t1). Thus, given X(t1) and B(t1), first we
integrate (1a) to obtain X(t2), then we obtain B(t2) by
Monte Carlo simulations of (4) for each k. More prac-
tical aspects of this parameterization scheme are dis-
cussed in the next section.

Adding Xk(t2) to the conditions Xk(t1) and Bk(t1) in
(4) is natural because the distribution for Bk(t2) de-
pends strongly on the direction in which Xk is moving.
Note that the value of Xk(t2) information is readily
available via integration of (1a) on t ∈ [t1, t2] with
Bk(t) � Bk(t1). As an illustration, we calculated PDFs
for Bk on the interval 1.5 � Xk � 2.5, depending
on whether Xk is growing or decreasing in value.
More precisely, we calculated the PDFs �[Bk(t) |1.5 �
Xk(t) � 2.5, Xk(t) � Xk(t � �t)] and �[Bk(t) |1.5 �
Xk(t) � 2.5, Xk(t) � Xk(t � �t)]. They are shown, to-
gether with the total PDF �[Bk(t) |1.5 � Xk(t) � 2.5], in
Fig. 3. The significant differences between these PDFs
make clear why a parameterization with the conditional

transition probability P[Bk(t2) |Bk(t1), Xk(t1)] instead of
(4) would result in a less accurate model in the case of
L96. We expect the inclusion of Xk(t2) as a condition to
be less important for models that are more strongly
mixing, so that �[Bk(t2) |Bk(t1), Xk(t1)] is roughly the
same when Xk is growing as it is when Xk is decreasing.

The parameterization we propose has some similari-
ties with the stochastic parameterization for L96 stud-
ied in Wilks (2005). There, the Bk are modeled by a
deterministic term [a function g(Xk) found by fitting a
polynomial to the (Xk, Bk) data] plus a stochastic term
coming from an autoregressive [AR(1)] process. The
AR(1) process itself is not conditional on Xk. However,
because the stochastic term is added to a deterministic
one, the scheme studied in Wilks (2005) is equivalent to
parameterization with an AR(1) process with Xk-de-
pendent mean. The parameterization approach pro-
posed here is more general, because the stochastic pro-
cess we use need not be of the AR(1) type and its
conditionality on Xk is not restricted to the mean but
extends to, for example, variance, skewness and de-
correlation time. In section 5, we will show that our
approach outperforms the one proposed in Wilks
(2005), at least for the example of L96 in the parameter
regime that we consider.

4. A practical algorithm using Markov chains

In this paper, we choose to model the conditional
Markov process that replaces Bk as a collection of
Markov chains. As a result, Bk becomes a discrete ran-
dom variable. One can also choose to model the Bk

with Markov processes that are continuous in space
(e.g., diffusion processes); we use Markov chains here
because of their computational ease. Even with a small
number of Markov chain states, statistical properties
such as variance, skewness, and decorrelation time can
be captured. Moreover, data inference of Markov
chains is much easier to carry out than inference of
(possibly non-Gaussian) continuous stochastic pro-
cesses from data. The conditionality on Xk(t1) and
Xk(t2) is implemented by letting the properties of the
Markov chain change stepwise (not continuously), de-
pending on the intervals in which Xk(t1) and Xk(t2) re-
side. It must be stressed that although the Bk have be-
come discrete variables, and although the Markov
chain properties change discretely rather than continu-
ously with Xk, the resulting (reduced) model for the
resolved variables (the Xk) is still continuous.

a. Estimation of the Markov chains

For the construction of the Markov chains, all data
points (Xk, Bk) are assigned to discrete states (i, n) by

FIG. 3. PDFs �(Bk) for Bk in the interval 1.5 � Xk � 2.5,
conditional on the sign of Xk(t) � Xk(t � �t): (dashed line)
�[Bk(t) | 1.5 � Xk(t) � 2.5, Xk(t) � Xk(t � �t)], (dotted line)
�[Bk(t)| 1.5 � Xk(t) � 2.5, Xk(t) � Xk(t � �t)], and (solid line)
total PDF �[Bk(t) | 1.5 � Xk(t) � 2.5].
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partitioning the (Xk, Bk) plane into bins. First, the
range of possible values of Xk is divided into NX non-
overlapping intervals Ii(i � 1, . . . , NX). Within each
interval Ii, the range of values of Bk is divided into NB

nonoverlapping intervals J i
n(n � 1, . . . , NB). A set of

stochastic matrices is constructed by estimating a spa-
tially discrete version of the conditional transition prob-
ability (4) from the data:

Pnm
�ij� � P�Bk�t � �t� ∈ J m

j |Xk�t� ∈ Ii, Bk�t� ∈ J n
i ,

Xk�t � �t� ∈ Ij�, �5a�

�
Tin| jm

�
m�1

NB

Tin| jm

. �5b�

The object Tin|jm counts the transitions from (i, n) to
( j, m) in the data:

Tin| jm � �
t

1�Bk�t� ∈ J n
i �1�Xk�t� ∈ Ii�

� 1�Bk�t � �t� ∈ J m
j �1�Xk�t � �t� ∈ Ij�, �6�

where �t denotes the sum over all discrete times t � 0,
�t, 2�t, . . . in the dataset and 1[.] denotes the indicator
function 1[Bk(t) ∈ J i

n] � 1 if Bk(t) ∈ J i
n and 1[Bk(t) ∈

J i
n] � 0 if Bk(t) ∉J i

n, and so forth. For simplicity, we
assume that the time interval �t between two data
points is constant throughout the dataset.

For any i and j fixed, the matrix P(ij) satisfies

�n, m:Pnm
�ij� � 0, �n: �

m�1

NB

Pnm
�ij� � 1, �7�

so P(ij) is an (NB � NB) stochastic matrix (note that i
and j themselves run from 1 to NX). The discrete states
(i, n) are assigned a value B i

n for Bk that is the average
of all data points falling in bin J i

n:

B n
i �

�
t

Bk�t�1�Bk�t� ∈ J n
i �1�Xk�t� ∈ Ii�

�
t

1�Bk�t� ∈ J n
i �1�Xk�t� ∈ Ii�

. �8�

Construction of the transition probability matrices
P(ij) is not possible if |i � j| is too large. The (Xk, Bk)
data do not contain pairs of consecutive points with
Xk(t) ∈ Ii, Xk(t � �t) ∈ Ij if i and j are far apart and the
time step �t is small. However, this is not a problem,
because transitions between distant intervals Ii and Ij

are also unlikely to occur during an integration of the
reduced L96 model. In practice, the only matrices P(ij)

that are really needed are those with |i � j| � 1. �f
the (Xk, Bk) data does not contain any transition out
of (i, n) into j for some combination of i, j, n, then

�mTin| jm � 0. In that case, we set P(ij)
nm � �nm for that

particular triplet of i, j, n (where �nm is the Kronecker
delta). This avoids the numerical integration breaking
off on the rare occasion that a transition occurs for
which we have no data. A more sophisticated way of
dealing with this problem involves summation over all
intermediate steps (i, n) → (i, n) → ( j, m) with known
transition probabilities. We will not do this here.

b. Time step of the Markov chains

The stochastic matrices P(ij) are made up of the tran-
sition probabilities (5a) over a fixed time interval �t, at
which the (Xk, Bk) data is sampled. However, in prac-
tical situations it is possible that the data available for
the construction of a parameterization scheme is
sampled with a time step �t that is different from the
time step �t at which the numerical model will be inte-
grated. For example, �t can be so large that an integra-
tion scheme with �t � �t would be numerically un-
stable.

There are two ways of dealing with this problem of
nonmatching time steps. One possibility is to use a split-
integration scheme. Assume for simplicity that �t is an
integer multiple of �t, say, �t � Nt �t. We integrate Xk

with time step �t and update Bk once every Nt time
steps. Of course, the transition probability matrix P(ij)

used to evolve Bk in time must have i and j such that
Xk(t1) ∈ Ii and Xk(t2) ∈ Ij with t2 � t1 � Nt �t, not t2 �
t1 � �t.

Another possibility to tackle the problem is by cal-
culating transition probability matrices P̃(ij) with an as-
sociated time step �t, starting from matrices P(ij) with
time step �t. Unfortunately, the straightforward but na-
ive choice P̃(ij) � [P(ij)]�t/�t does not, in general, result in
a new stochastic matrix (some matrix elements may be
negative or complex) because of the Markov chain em-
bedding problem (for a discussion, see Bladt and Sø-
rensen 2005; Crommelin and Vanden-Eijnden 2006).
To find a matrix P̃(ij) that is both a true stochastic ma-
trix and approximately equal to [P(ij)]�t/�t, one should
first construct a so-called generator matrix L from P(ij).
The L must be such that (i) exp(�t L) resembles P(ij) as
closely as possible and (ii) exp(�t L) qualifies as a sto-
chastic matrix for all �t � 0. Two different methods for
the numerical construction of generators can be found
in Bladt and Sørensen (2005) and Crommelin and
Vanden-Eijnden (2006). After L is constructed, the ma-
trix P̃(ij) � exp(�t L) is a true stochastic matrix that
approximates [P(ij)]�t/�t as best as possible. The degree
of proximity depends on how close exp(�t L) is to P(ij).
The difference between exp(�t L) and P(ij) can be non-
negligible for some P(ij), creating a source of error for
the parameterization scheme. For these reasons, and
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because the split-integration scheme described before
gave good results for L96 (see section 5c), we will not
investigate the generator method any further here.

c. Numerical integration

Having the transition matrices P(ij) [or P̃(ij)] for time
interval �t available, time integration of the reduced
L96 model with conditional Markov chain (CMC) pa-
rameterization is done as follows: given the vectors X(t)
and B(t), the next time iterate X(t � �t) is calculated
using the derivative of X determined by Eq. (1a), with
B fixed at B(t). Then the time step for Bk is made by
Monte Carlo simulation (independent simulations for
different k) of the Markov chain with the transition
probability matrix P(ij), with i and j such that Xk(t) ∈ Ii

and Xk(t � �t) ∈ Ij. As mentioned before, the Bk have
become discrete variables, because they can only take
on a finite number of values (the B i

n). If Bk is sent from
state (i, n) to state ( j, m) by the Monte Carlo simula-
tion, it means that the value of Bk to be used in the
integration of Xk changes from B i

n to B j
m.

5. Numerical results

We compare the results generated by the reduced
L96 model [Eq. (1a) without (1b)] using three different
parameterization schemes for Bk: deterministic (DTM),
the AR(1) scheme as presented in Wilks (2005), and
the CMC scheme described in the previous sections.
We generate data for Xk and Bk by integrating the full
L96 model (1) with parameters (	, K, J, F, hx, hy) �
(0.5, 18, 20, 10, �1, 1). Thus, there is hardly any time
scale separation between the resolved and the unre-
solved variables, making the situation more realistic
(and more difficult) than would be the case with the
more common choice of 	 � 0.1. We integrate the full
L96 model for 103 time units with time step 10�3 and
store the resulting (Xk, Bk) every 0.01 time unit (i.e., �t
� 0.01). Thus, the dataset contains 105 points. The re-
duced models will be integrated with the same time
step, �t � 0.01. In the last part of this section, we con-
sider the case where �t � �t, which adds a complication
as described in section 4b.

For the DTM parameterization scheme, a fifth-order
polynomial is fitted to the (Xk, Bk) data. The resulting
function Bk � g(Xk), shown in Fig. 4, is used as a pa-
rameterization of Bk.

The AR(1) scheme from Wilks (2005) consists of rep-
resenting Bk(t) by a deterministic term plus a stochastic
term:

Bk�t� � g�Xk�t�� � ��t�. �9�

For g(Xk), we take the polynomial function also used
for the DTM scheme. The stochastic term � is generated
by an AR(1) process whose parameters are obtained by
fitting the process to the time series of Bk(t) � g[Xk(t)].
The data in this time series are sampled at a time in-
terval of �t � 0.01 and lead to an AR(1) process with
mean zero, standard deviation of 0.88 and e-folding
(decorrelation) time of 4.3. Thus, the AR(1) process
can be regarded as red noise.

For the CMC scheme, we have to choose the inter-
vals Ii and J i

n. Once this is done, we construct the tran-
sition matrices P(ij) and the discrete values B i

n for Bk

from the (Xk, Bk) data, using expressions (5b), (6), and
(8). For Xk, we use 16 intervals of width 1, centered at

FIG. 4. (top) The solid curve is the fifth-order polynomial fit
used for the DTM parameterization of Bk. (bottom) The black
squares denote the values of the B i

n used for the CMC param-
eterization with NB � 4 (see text). In both panels, the dots are the
scatterplot of Bk vs Xk for the full L96 model (1).
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integer values of Xk. At the beginning and end of
the domain, we use unbounded intervals. Thus, I1 �
(��, �4.5], I2 � (�4.5, �3.5], I3 � (�3.5, �2.5], . . . ,
and I16 � (9.5, ��). Within each interval I i, the bins J i

n

are determined such that each bin contains (approxi-
mately) an equal number of data points. We set the
number of bins to NB � 4 for all calculations. The re-
sulting values of B i

n are plotted in the lower panel of
Fig. 4. Using NB � 8 instead of NB � 4 gave no signif-
icant improvement in the results and are therefore not
shown.

a. PDFs, correlations, and wave statistics

We integrate the reduced L96 models with the vari-
ous parameterization schemes and calculate several
quantities from the data of the reduced models as well
as from the data of the full L96 model. Each time series
is 105 data points long with sampling interval �t � 0.01.
We calculate the following quantities:

• the PDF for Xk;
• the autocorrelation function (ACF) for Xk;
• the cross-correlation function (CCF) for Xk and

Xk�1;
• by Fourier transforming the state vector X at every

data point, a time series for the wavenumber vector u
is obtained, from which we calculate the wave vari-
ance �|um � �um�|2� for every wavenumber 0 � m �

K/2, where �.� denotes time average; and
• the mean wave amplitude �|um|�.

For calculation of the PDFs, ACFs, and CCFs, we
take the average over all values of k. The PDF for Xk of
the full L96 model is well reproduced by all parameter-
ization schemes (Fig. 5). Differences among the
schemes are quite small here. The ACF (Fig. 6) and
CCF (Fig. 7), both strongly oscillatory, are more accu-
rately reproduced by the CMC scheme than by the oth-
ers. All schemes give oscillatory ACFs and CCFs, but
with the DTM and AR(1) schemes, the amplitude of
the oscillation is too low and a phase shift can be seen.
The wave variances and mean wave amplitudes of the
full L96 model are also better reproduced with the
CMC scheme than with the others (Fig. 8). The CMC
scheme gives a correct peak in the variance at wave-
number m � 3; the other schemes show a lower,
broader peak spread out over wavenumbers m � 3 and
m � 4. A similar effect can be seen in the mean wave
amplitudes.

In Wilks (2005), the PDF of Xk is also rather well
reproduced by various parameterization schemes
(DTM, AR(1), with white noise and red noise), similar

to what we find. Correlation functions and wave statis-
tics, similar to our Figs. 6–8, are not calculated in Wilks
(2005).

b. Ensemble tests

We carry out ensemble integrations for further test-
ing of the CMC parameterization. For each ensemble,
we calculate the mean trajectory and compare it with
the true trajectory from the full L96 model. This is done
by calculating the root-mean-square error (RMSE) and
the anomaly correlation (ANCR) using results from
many different ensembles. The number of ensemble
members in each ensemble is 1, 5, or 20. For the 20-
member ensembles, we also calculate rank histograms
to show the ensemble dispersion.

The setup is as follows. Let Xfull
t be a time series for

FIG. 5. PDFs of Xk, produced by the reduced models with vari-
ous parameterization schemes. (top) CMC scheme with NB � 4,
(middle) deterministic (DTM) scheme, (bottom) AR(1) scheme
from Wilks (2005). The PDF produced by the full L96 model (1)
is added in each panel for comparison.
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X of the full L96 model. A number of Ninit initial states
from this time series is selected:

Xinit,s � Xts
full, s � 1, . . . , Ninit. �10�

We take one data point every 10 time units from Xfull
t ,

so ts�1 � ts � 10. For every initial state, we do Nens

integrations of the reduced model over T time units
[using the CMC, DTM, or AR(1) parameterization],
starting from Xinit,s plus a small random perturbation
�s,n (n � 1, . . . , Nens). We use random perturbations
that are drawn from a Gaussian distribution with mean
0 and standard deviation 0.15 (for comparison: the stan-
dard deviation of Xk is about 3.5 with the parameter
settings we use for the full L96 model). We make no
attempt to sample the unstable directions of phase
space more heavily than other directions nor to gener-
ate ensembles using fastest-growing perturbations from
singular-value decomposition. For the purpose of com-

paring different parameterization approaches, the
simple generation of ensemble members described
above is sufficient.

The different integrations from one ensemble are av-
eraged, resulting in a mean trajectory Xmean,s

t [where
t ∈ (0, T) and s � 1, . . . , Ninit]. The RMSE measures
the average difference between the mean ensemble tra-
jectory and the trajectory from the full L96 model:

RMSE��� � � 1
Ninit

�
s

|X�
mean,s � Xts��

full |2�1�2

.

�11�

For the anomaly correlation, we need the anomalies of
the full L96 model and the ensemble mean:

a�
full,s � Xts � �

full � �Xfull�, �12�

a�
mean,s � X�

mean,s � �Xfull�, �13�

FIG. 6. ACFs of Xk. Results from reduced models with different
parameterization schemes [CMC, DTM, AR(1)] are shown, to-
gether with the ACF from the full L96 model.

FIG. 7. CCF of Xk and Xk�1. Results from reduced models with
different parameterization schemes [CMC, DTM, AR(1)] are
shown, together with the CCF from the full L96 model.
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where �Xfull� is the time mean of Xfull
t . The ANCR is

ANCR��� �
1

Ninit
�

s

a�
full,s 	 a�

mean,s

�|a�
full,s|2|a�

mean,s|2
, �14�

where a • b � �kakbk and |a|2 � a • a. The anomaly
correlation shows the average correlation after time �
between the “true” trajectories (those of the full L96
model) and the mean “forecast” trajectories (the mean
ensemble trajectories of the reduced model).

The rank histograms are calculated from ensemble

integrations at lead time � � 2. For each grid point k,
we rank the Nens � 1 values for Xk from the ensemble
members and the full L96 model. Ideally, the distribu-
tion of the position of the truth (the value from the full
L96 model) in this ranking should approach a uniform
distribution (Hamill 2001); in that case, the rank histo-
gram is (nearly) flat. If the ensemble is underdispersed,
the truth occupies the extremes (locations at or near 1
and Nens � 1) too often, leading to a U-shape rank
histogram. In the reverse situation (overdispersion),
the extremes are occupied too rarely, which gives
a histogram with the shape of an inverted U. For the
rank histograms, we combine the results from all grid
points k.

The ensemble integrations were carried out using re-
duced models with CMC, DTM, and AR(1) parameter-
ization schemes, each starting from Ninit � 1000 differ-
ent initial states. For the calculations, we took ensemble
sizes Nens � 1, Nens � 5, and Nens � 20. Results for
RMSE and ANCR are shown in Figs. 9–11. The CMC
scheme clearly performs better than the other two. The
forecast lead time � at which the anomaly correlation
drops below 0.6 is extended, with about 20% when
changing from the DTM to the CMC schemes in case
Nens � 1, and with about 40% if Nens � 20. From the
DTM scheme with Nens � 1 to the CMC scheme with
Nens � 20, this extension is about 65%. The CMC
scheme with Nens � 5 performs better than the DTM or
AR(1) scheme with Nens � 20.

Figure 12 shows the rank histograms for Nens � 20.
The CMC scheme has a positive effect on the ensemble
spread: the corresponding rank histogram is nearly flat.
The AR(1) scheme gives underdispersed ensembles;
the DTM scheme leads to strong underdispersion. The
rank histograms of the ensembles with AR(1) and
DTM schemes can be made flatter by increasing the
amplitude of the initial-state perturbations � s,n; the en-
sembles with CMC scheme become overdispersed if the
perturbation amplitude is increased, as expected.

It is interesting to note that the AR(1) scheme does
not perform better than the DTM scheme in our tests.
As mentioned, the properties of the AR(1) stochastic
process for the AR(1) scheme were estimated using the
data at the shortest available time interval, �t � 0.01. If
we carry out the estimation at longer time intervals,
resulting in AR(1) processes with shorter e-folding
times, the performance of the AR(1) parameterization
scheme does not improve (results not shown). In Wilks
(2005), results are reported where the AR(1) scheme
performs better than the DTM scheme in ensemble
tests. Two important differences with the tests in our
study are (i) the parameter settings of the full L96

FIG. 8. (top) Wave variances �|um � �um�| 2� and (bottom) mean
wave amplitudes �|um| �. Time series for the wavenumber vector u
are obtained by Fourier transforming the state vector X at every
data point. The Fourier mode with wavenumber m has variance
�|um � �um�| 2� and mean amplitude �|um| � (where �.� denotes time
average). Results from the full L96 model and from reduced mod-
els with different parameterization schemes [CMC, DTM, AR(1)]
are shown.
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model used in Wilks (2005) (equivalent to 	 � 0.1, K �
8, J � 32, hx � �3.2, hy � 1, and F � 18 or 20) and (ii)
the setup of the ensemble tests (different ways to gen-
erate ensemble members). Rerunning our own tests us-
ing the parameter settings from Wilks (2005) gave quite
similar results for the DTM and AR(1) schemes, in
both the nonensemble tests (PDFs, correlation func-
tions, wave statistics) and the ensemble tests. The dif-
ference of our findings with those reported by Wilks
(2005) can be due to differences in the ensemble test
setup (but note the consistency of our own ensemble
and nonensemble test results) or to small yet appar-
ently important differences in the way the schemes are
implemented.

c. The case of �t � �t

As already discussed in section 4b, practical circum-
stances may be such that the integration time step �t of
the numerical model is different from the sampling time
step �t of the available data. Two ways of dealing with
this problem were described in section 4b: (i) using a
split-integration scheme (update X every �t time units,
but B only every �t time units) and (ii) calculating tran-
sition probability matrices P̃(ij) with time step �t, start-
ing from matrices P(ij) with time step �t (the “generator
method”). The latter possibility is more complicated to
implement and gives less accurate results (for reasons
also discussed in section 4b) than the split-integration

FIG. 9. Results from ensemble integrations with reduced models
using the CMC parameterization scheme (NB � 4), the DTM
scheme, and the AR(1) scheme. (top) RMSE vs lead time (�);
(bottom) ANCR vs lead time. The number of ensemble members
is Nens � 1; the number of initial states is Ninit � 1000.

FIG. 10. Results from ensemble integrations with reduced mod-
els using the CMC parameterization scheme (NB � 4), the DTM
scheme, and the AR(1) scheme. (top) RMSE vs lead time (�);
(bottom) ANCR vs lead time. The number of ensemble members
is Nens � 5; the number of initial states is Ninit � 1000.
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scheme in our testing setup. Therefore, we only present
results here using the split-integration scheme. How-
ever, we note that the generator method can still be of
practical use if model output is desired at a shorter
sampling interval than that of the available data. More-
over, we speculate that the performance using the gen-
erator method will improve for models that are more
strongly mixing than the L96 model.

The results obtained by using the split-integration
scheme are shown in Figs. 13–16 (RMSE is omitted
here, because it gives a similar picture as the anomaly
correlation). For the construction of the stochastic ma-
trices P(ij), we used data from the full L96 model with
sampling interval �t � 0.1. The integration time step of

the reduced model with CMC parameterization is �t �
0.01. Thus, during the integration, the Bk are updated
once every 10 time steps. As can be seen, this version of
the CMC scheme for the case �t k �t performs well,
although it remains slightly less accurate than the CMC
method using �t � �t presented in sections 5a,b (in the
figures, those results are added for comparison). The
fact that the Bk are updated only once every 10 time
steps speeds up the computation significantly. This
computational advantage can be such that using the
split scheme may be attractive even if data with �t � �t

FIG. 13. PDFs of Xk, as produced by the full L96 model, the
reduced model with CMC scheme based on data with �t � �t, and
the reduced model with CMC scheme based on data with �t k �t
using the split-integration scheme.

FIG. 11. Results from ensemble integrations with reduced mod-
els using the CMC parameterization scheme (NB � 4), the DTM
scheme, and the AR(1) scheme. (top) RMSE vs lead time (�);
(bottom) ANCR vs lead time. The number of ensemble members
is Nens � 20; the number of initial states is Ninit � 1000.

FIG. 12. Rank histograms resulting from ensemble integrations
with reduced models using the CMC parameterization scheme
(NB � 4), the DTM scheme, and the AR(1) scheme. Lead time is
� � 2; ensemble size is Nens � 20. The CMC scheme gives a
near-uniform distribution; the DTM and AR(1) schemes lead to
underdispersed ensembles, visible as U-shape histograms.
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are available. The increase in speed can outweigh the
decrease in performance (which is rather small in our
results) in some circumstances, in particular, if Bk does
not evolve fast but on a similar time scale as Xk.

6. Discussion

The purpose of this study was to present a new ap-
proach to stochastic parameterization and to test this
approach by implementing it in the framework of the
Lorenz ’96 model. The new parameterization scheme
we have proposed represents unresolved processes as
stochastic (Markov) processes whose properties are
conditional on the state of the resolved variables. In our

numerical algorithm, these conditional Markov pro-
cesses take the form of a collection of Markov chains,
making practical implementation easy. The Markov
chains are inferred from data in a very simple way,
using only binning and counting.

We have compared the conditional Markov chain
(CMC) scheme with two other parameterization
schemes: a standard deterministic one (DTM) and the
stochastic schemes [AR(1)] proposed in Wilks [2005].
Several tests were carried out to assess the performance
of the various schemes, comparing probability distribu-
tions (PDFs), correlation functions (ACFs and CCFs),
wave statistics, and ensemble forecasts. The CMC
scheme performed better than the DTM and AR(1)

FIG. 14. (top) ACF of Xk and (bottom) CCF of Xk and Xk�1.
Results are from the full L96 model, the reduced model with CMC
scheme based on data with �t � �t, and the reduced model with
CMC scheme based on data with �t k �t using the split-
integration scheme.

FIG. 15. (top) Wave variances �| um � �um�| 2� and (bottom)
mean wave amplitudes �| um| �. Results are from the full L96
model, the reduced model with CMC scheme based on data with
�t � �t, and the reduced model with CMC scheme based on data
with �t k �t using the split-integration scheme.
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schemes, even though the number of states of the
Markov chains was small (NB � 4). To test the robust-
ness of these results, we made a brief exploration of
other parameter settings for the L96 model. With 	 �
0.5, the CMC scheme performed substantially better
than the other two schemes. In the presence of clear
time scale separation between the resolved and the un-
resolved variables (	 � 0.1), differences in performance
between the schemes were rather minor (results not
shown).

For a better understanding of the good performance
of the CMC scheme, it should be pointed out that with
the parameter settings for L96 used in this study, the
motion of phase points in the (Xk, Bk) plane tends to
follow a roughly clockwise path. When Xk increases, Bk

typically takes a (noisy) path through the upper part of
the cloud of points shown in Fig. 1. During a decrease
of Xk, Bk is more likely to be in the lower part of the
cloud. The imprint of this “loop” (somewhat reminis-
cent of a hysteresis loop) in otherwise noisy behavior
can be captured with the CMC scheme but not with the
DTM or AR(1) scheme. With the AR(1) scheme driven
by red noise, sustained trajectories through the lower or
upper part of the data cloud are also possible; however,
those trajectories are equally likely to follow the loop as
they are to go against it. The CMC scheme is better
equipped, by design, to capture such structures.

Altogether, the results from the proposed CMC pa-
rameterization scheme are encouraging. Clearly, the
L96 model is an idealized toy model, making it a suit-

able testing ground for a new parameterization ap-
proach. However, care should be taken when extrapo-
lating results obtained within the L96 framework to
other model situations. As a next step, the CMC
scheme will have to be implemented and tested in a
more realistic modeling environment.

In our testing, we already took into account two is-
sues that can be expected to be of importance in more
comprehensive model setups. First, we used parameter
settings for the full L96 model that give little-to-no time
scale separation between the resolved and unresolved
variables. Previous studies of the L96 system were often
carried out with parameters such that the unresolved
variables (the Yj,k) evolve on a faster time scale than
the resolved variables. This time scale separation allows
for the use of designated mathematical results and tech-
niques (see, e.g., Fatkullin and Vanden-Eijnden 2004;
Vanden-Eijnden 2003) but can be unrealistic.

A second issue is the sampling interval of the data
that is available to base the parameterization on. The
sampling interval can be different (longer) than the
time step at which the numerical model with the pa-
rameterization scheme is integrated. This issue may
arise when dealing, for example, with data stemming
from observations that do not have a high temporal
resolution. We discussed two potential solutions to this
problem (see sections 4b and 5c). The split-integration
scheme solution gave the best results here, with only a
minor decrease in performance (and significant reduc-
tion in computation time) compared to the case in
which both time steps were equal.

We conclude by discussing a number of further issues
that will be of relevance for the application of the CMC
scheme in more realistic models.

• The Xk variables of the L96 model are usually inter-
preted as lying on a circle of constant latitude (see
section 2). Thus, the L96 model can be regarded,
somewhat loosely, as a model with one spatial dimen-
sion (the x or E–W direction), discretized on a num-
ber of grid points. The y and z directions (N–S and
vertical) are absent in L96. In more realistic models,
all three spatial directions are present; gridpoint dis-
cretization leads to a number of grid points that is
orders of magnitude higher than in the L96 model.
From a computational point of view, this increase
need not be problematic. The CMC scheme runs in-
dependently for each grid point and is therefore suit-
able for parallelization. The computational cost at
each grid point is very small: only a small Markov
chain must be evolved in time.

• The conditionality of the Markov chain at each grid
point (the Xk dependence) was limited by using a

FIG. 16. ANCR vs lead time. Results are from the reduced
model with CMC scheme based on data with �t � �t (solid lines)
and the reduced model with CMC scheme based on data with
�t k �t using the split-integration scheme. The various curves
show results using Nens � 1, Nens � 5, and Nens � 20. At any value
of the lead time, the larger the Nens, the higher the correlation.
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locality” assumption: the Markov chain at grid point
k depends only on the resolved variable (Xk) at that
same grid point, not on variables at other grid points
(Xk with k � k). If the number of grid points in-
creases because one considers models with two or
three spatial dimensions, this locality assumption will
keep the Markov chain conditionality equivalently
simple. Thus, the complexity of the CMC scheme at
each grid point is the same for a model with O(101)
grid points as it is for a model with O(106) grid points.

• The main challenge for applying the CMC scheme to
realistic models concerns the number of different
variables at each grid point. In the L96 model, there
is one quantity to be parameterized (Bk) and one
resolved variable (Xk) at each grid point k. However,
the adiabatic core of an atmosphere model based on
the primitive equations, for example, uses five re-
solved variables at each grid point. Making the
Markov chain conditional on several resolved vari-
ables can lead to an intractable scheme if done na-
ively. For example, dividing the range of each re-
solved variable into 16 intervals (similar to the 16
intervals Ii for Xk; see section 4) gives 165 � 106

possible bins in which the vector of the five resolved
variables at a single grid point can be at any moment.
Keeping the number of these bins limited is neces-
sary, both to limit computer memory demands of the
CMC scheme and to keep estimation of the Markov
chains from data feasible. Limiting the Markov chain
conditionality to one or two judiciously chosen re-
solved variables and/or making the chain conditional
on a (linear) combination of variables are possible
solutions.

The number of quantities for which a parameter-
ization is needed at each grid point is usually also
larger than one. This can be dealt with by using sepa-
rate Markov chains for separate quantities. Correla-
tions between these quantities are partly accounted
for through the dependence on resolved variables. If
strong correlations or physical requirements (e.g.,
conservation properties) do not permit the use of
separate Markov chains at a single grid point, one
collective Markov chain must be constructed in which
each Markov chain state corresponds to a particular
combination of values for the different parameter-
ized quantities at the grid point.

• The properties of the conditional Markov chain were
inferred from data. For the L96 model, such data
were easily generated by integrating the full L96
model. For more realistic models, there is no “meta-
model” that can be run easily and cheaply to produce
the necessary data. Instead, one can use data from
two sources: 1) data observations (or reanalysis data)

or 2) data produced by high-resolution models of lim-
ited spatial extent (e.g., a single GCM gridbox) and
sufficient physical sophistication.

Using the same conditional Markov chain (i.e., the
same set of transition matrices) at every grid point, as
we did for the L96 model, will be too simple for some
purposes (depending on the parameterized quantity).
The geographical location of grid points can be ex-
pected to play a role in realistic models. It may be
impractical to construct separate Markov chains for
each grid point; instead, one can define a few groups
of grid points (e.g., tropics or midlatitudes, boundary
layer or above, grid points over land or sea) and con-
struct Markov chains for each group separately.
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